Don’t Teach to Learning Styles
Different strokes for different folks. What works for you doesn’t necessarily work for me. These sayings appeal to our American ideals of individualism and equality, don’t they? And they certainly seem to apply to how we think we should teach. Our assumption is that we all learn differently so good teachers should adjust instruction to how students learn. Specifically, we assume that some students are better auditory (or aural) learners, some are better visual learners, and some are better kinesthetic learners. Or add additional modalities or intelligences to the list, if you wish. All we need to do to maximize learning is to adjust instruction to fit the modality that best matches the students’ learning styles or intelligences. It just seems like good old-fashioned common sense. However, common sense isn’t always our best guide.
However, common sense is not always a trustworthy or reliable guide. Galileo once challenged Aristotle’s wisdom and the popular consensus of two millennia that objects fall at different rates, depending upon their bulk. Galileo climbed to the top of the leaning tower of Pisa and dropped a tiny musket ball and a huge canon ball at the same time. Defying common sense, those objects reached ground at the same time. Even today, ask most people whether a nickel or computer would hit the ground first. Most would still pick the computer.
Teachers encounter counter-intuitive examples in teaching all the time: a not-so-bright student whose parents both have master’s degrees, a student with high fluency but low comprehension, an administrator who has never taught in a classroom. These anomalies just don’t make sense, but they happen quite frequently. In fact, before recent IDEA legislation, students with demonstrated learning problems could not qualify for special education unless there was an established discrepancy between ability and performance. In other words, unless the student’s learning disability challenged our notions of common sense, the student could not qualify for special education services.
Most teachers will say that they believe in some form of learning style or multiple intelligences theory. Most will say that they attempt to adjust instruction to some degree to how they perceive students learn best. Many use modality assessments to guide their instructional decision-making. This is particularly true within the special education community. Although there probably has been some change, Arter and Jenkins (1979) found that more than 90% of special education teachers believe in modality theory. These assumptions are especially relevant as special education teachers assume lead roles in the expanded Response to Intervention models, especially with respect to the three-tiered instructional model.
But these common sense assumptions are simply wrong for the most part. To understand why, we need to define our terms a bit. When we talk about how our students learn we need to consider three components of the learning process. First, the learner accesses input, that is teaching, through sensory experiences. Next, the learner makes meaning of and connects that new input to existing knowledge and experience. Finally, that learner stores this input into the short and long term memories.
Now, this learning process is not the same as knowledge. Learning (the verb) leads to knowledge (the noun). And knowledge is not how students learn. Knowledge is what students learn. Knowledge is stored in the memory. Knowledge = memory. Memory includes everything and excludes nothing. It even includes learning how to learn. We have no separate data bases.
So how is knowledge (memory) stored in the brain? According to cognitive scientists, 90% of the memory is meaning-based. Only 10% of the memory consists of visual or auditory representations (Willingham 2009). These percentages do reflect what we teach. Most everything we teach is meaning-based. So, shouldn’t we focus our teaching energies on matching how we teach to how the knowledge is stored?
Auditory Memory
Let’s start with the 10%. If knowledge will be stored as an auditory memory, teaching should emphasize this modality. For example, if band students are learning how to tune their instruments, they need to listen to and practice hearing the sound waves, not necessarily see a spectrograph or understand the complexities of how sound is produced. Or if students are learning to read with inflection, they need to hear good models of inflection and mimic those models. Both sound waves and reading inflection knowledge are stored primarily as auditory memories. To tune their instruments, band students will access their auditory memories of wave sounds and apply this knowledge to raising or lowering the pitch of their instruments. To read with inflection, students will recall the rhythm, emphasis, and altered voices of modeled readings and apply this knowledge to reading in front of the class.
Visual Memory
And now the balance of the 10%. If knowledge will be stored as a visual memory, teaching should emphasize this modality. For example, if art students are learning the color spectrum, they need to see and practice the colors with their various hues, not just memorize ROY G BIV (red, orange, yellow, green, blue, indigo, and violet). Or if students are memorizing the locations of the states, they will need to see and practice their shapes, sizes, and relationships to other states on political and/or physical maps. Both colors and the locations of states are stored primarily as visual memories. To draw an apple from memory, art students will access their visually stored memories of various hues of red and/or other colors and apply this knowledge to their watercolor. To pass the map test, students will recall the images of the political and/or physical maps and correctly label the states.
Meaning-Based Memory
And finally to the 90%. These meaning-based memories are stored independent of any modality-“not in terms of whether you saw, heard, or physically interacted with the information.” (Willingham 2009). If knowledge will be stored in the memory as meaning, teaching should be designed to emphasize this outcome. For example, if history students are learning the three branches of the federal government and the system of checks and balances, they need to understand the meanings of the terms: legislative, executive, and judicial as well as the specific limitations of and checks on powers that the framers of the Constitution designed to ensure balance and prevent abuse. Good teaching would emphasize both rehearsal and application of this information to ensure understanding. This would, of course, necessitate using the auditory (or aural) modality. It would also certainly be appropriate to use the visual modality by drawing the three-branch tree with each branch representing the divisions of government. However, most of the learning process will necessitate memorizing how, what, where, when, and why facts through meaning-storage strategies and techniques (such as repetition), establishing cognitive connections to prior knowledge and experiences with plenty of appropriate examples, and practicing trial and error feedback through class discussion, reading, and writing. Whew! Complex, meaning-based stuff. On the test, students will not access memories of the teacher’s lecture voice or the teacher’s tree drawing to answer the multiple-choice questions. Students will recall meaning-based memories derived from teaching that appropriately matches the content to be learned. If 90% of what our students learn is meaning-based, why waste limited planning and instructional time fixating on the 10%? Now that’s good old-fashioned common sense.
A little knowledge is a dangerous thing… especially in education. We teachers tend to bandwagon on many of the latest, greatest teaching trends. Remember those impressive-looking illustrations of the brain on the Universal Design for Learning site from a few years back and the interesting graphic organizers on the multiple intelligences sites? Or the brain-based strategies that were all the rage? We tend to hopelessly simplify what are complex subjects. What we know about the brain is still in its infancy. Daniel T. Willingham, cognitive psychologist and neuroscientist at the University of Virginia advises districts, schools, and teachers to “save your money” on any brain-based instructional in-services or instructional resources. According to Willingham, meaning-based memories make up the 90% of our memory. Visual and auditory memories are a small chunk of the rest. See Willingham’s excellent YouTube video on the fallacy of brain-based instruction. Another great one is a Ted Talk by Tesia Marshik, Assistant Professor of Psychology at the University of Wisconsin.
*****
Get the SCRIP Comprehension Cues FREE Resource:
Get the Diagnostic ELA and Reading Assessments FREE Resource:
*****